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Patrolling Repairman Example 
 
 
• N machines 
• Single repairman visits machines in order    1→ 2→!→ N →1→ 2→!  
• Repairs stopped machine, walks past running machine 
• Repair times for machine j are i.i.d. as a random variable Rj 
• Lifetimes for machine j are i.i.d. as a continuous random variable Lj 
• Walking time from machine j to next machine is a constant Wj  > 0 
• At time 0, the repairman has just finished repairing machine 1 and all other machines are broken.  
 
Suppose we wish to estimate µr, the expected fraction of time in [0, t] that the repairman spends repairing 
machines. If we define our system state by X(t) = A(t), where 
 

  A(t) = 
1 if repairman is repairing a machine
0 otherwise

⎧
⎨
⎩

 

 

then µr = 
0

1 ( )
t

E A u du
t
⎡ ⎤
⎢ ⎥⎣ ⎦∫ . We might also want to estimate µs, the expected number of stopped machines 

at time t, or µw, the long-run average wait for repair for machine 1. 
 
Problems: 
 
• Can’t determine number of stopped machines just from observing A(t) 
• Not even clear how to generate sample paths of {A(t): t ≥ 0} 
 
⇒ need to put more information into state definition 
 
Here’s another attempt at a state definition: 
 

X(t) = (Z1(t), Z2(t), ... , ZN(t), M(t), N(t)), 
 
where  
 

Zj(t) = 
1 if machine j is waiting for repair at time t
0 otherwise

⎧
⎨
⎩

 

 

M(t) = 
if machine j is under repair at time t

0 if no machine is under repair at time t
j⎧

⎨
⎩

 

 
N(t) = j  if at time t the repairman will next arrive at machine j 
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Then we can generate sample paths of {X(t): t ≥ 0} (because this process is a well-defined GSMP as 
shown below and, as discussed in class, there is a well-defined algorithm for generating sample paths of a 
GSMP). Also, all of the system characteristics of interest can be precisely expressed in terms of {X(t): t ≥ 
0}: 
 

  µr = 
0

1 ( ( ))
t

rE f X u du
t
⎡ ⎤
⎢ ⎥⎣ ⎦∫    and    µs = E[fs(X(t))] 

 
where  
 

fr(z1, ... , zN, m, n) = 1{1,2,...,N}(m) 
 
fs(z1, ... , zN, m, n) = z1 + z2 + ... + zN + 1{1,2,...,N}(m) 
 

(Here 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.) 
 
Also, we can express µw in terms of {X(t): t ≥ 0}. To see this, set B0 = 0 and recursively define the start 
and termination of the nth waiting time for machine 1 by 
 
An = min{ζk > Bn-1: Z1(ζk-1) =  0 and Z1(ζk) = 1} and Bn = min{ζk > An: M(ζk-1) ≠ 1 and M(ζk) = 1} 
 
where ζn is the time of the nth state transition. We can also define these times in terms of the continuous 
time process by setting 
 
          An = min{t > Bn-1: Z1(t-) =  0 and Z1(t) = 1} and Bn = min{t > An: M(t-) ≠ 1 and M(t) = 1}, 
 
where X(t-) indicates the state of the system just before time t. 
 
In either case, we can then write the nth waiting time as Dn = Bn – An, and hence  
 

  µw = 
1

1lim
n

kn k
D

n→∞ =
∑   (assuming that it exists) 

 
The process {X(t): t ≥ 0} can be specified as a GSMP as follows: 
 
• S consists of all (z1, ... , zN, m, n) ∈ {0,1}N × {0, 1, ..., N} × {1, 2, ... , N} such that 

♦ n = m + 1 if 0 < m < N 
♦ n = 1 if  m = N 
♦ m = j only if  zj = 0 (1 ≤ j ≤ N) 

• E = {e1, e2, ... , eN+2}, where  
♦ ej = “stoppage of machine j” (1 ≤ j ≤ N) 
♦ eN+1 = “completion of repair” 
♦ eN+2 = “arrival of repairman” 

• E(s) is defined as follows for s = (z1, ... , zN, m, n): 
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♦ ej ∈ E(s)  (1 ≤ j ≤ N) iff   zj = 0 and m ≠ j 
♦ eN+1 ∈ E(s)   iff   m > 0 
♦ eN+2 ∈ E(s)   iff   m = 0 

• p( 's ; s, e*) is defined as follows: 
♦ if e* = ej (1 ≤ j ≤ N),  then p( 's ; s, e*) = 1 

when s = (z1, ... , zj-1, 0, zj+1, ... , zN, m, n) and 's  = (z1, ... , zj-1, 1, zj+1, ... , zN, m, n) 
♦ if e* = eN+2, then p( 's ; s, e*) = 1 

when s = (z1, ... , zj-1, 1, zj+1, ... , zN, 0, j)  with j < N and 's  = (z1, ... , zj-1, 0, zj+1, ... , zN, j, j+1); 
when s = (z1, z2, ... , zN-1,  1, 0, N) and 's  = (z1, z2, ... , zN-1, 0, N, 1); 
when s = (z1, ... , zj-1, 0, zj+1, ... , zN, 0, j) with j < N and 's  = (z1, ... , zj-1, 0, zj+1, ... , zN, 0, j+1);   
and when s = (z1, z2, ... , zN-1,  0, 0, N) and 's  = (z1, z2, ... , zN-1,  0, 0, 1) 

♦ exercise: do the case e* = eN+1 
• F(x; 's , 'e , s, e*) is defined as follows 

♦ if 'e  = ej (1 ≤ j ≤ N), then F(x; 's , 'e , s, e*) = P{Lj ≤ x} 
♦ if 'e  = eN+1 and 's  =  (z1, ... , zN, m, n) then F(x; 's , 'e , s, e*) = P{Rm ≤ x} 
♦ if 'e  = eN+2 and 's  =  (z1, ... , zN, 0, n) then F(x; 's , 'e , s, e*) = 1[0,x](Wn-1) if n > 1 and 1[0,x](WN) if 

n = 1 
• r(s, e) ≡ 1 for all s and e 
• initial dist’n: ( ) 1sν = , where s = (0,1,1,...,1,0,2), { }0 1 1 0 2 [0, ] 1( ; , )  and F ( ; , ) 1 ( )N xF x e s P L x x e s W+= ≤ =  

 
 


