Patrolling Repairman Example

- N machines
- Single repairman visits machines in order $1 \rightarrow 2 \rightarrow \cdots \rightarrow N \rightarrow 1 \rightarrow 2 \rightarrow \cdots$
- Repairs stopped machine, walks past running machine
- Repair times for machine j are i.i.d. as a random variable R_{j}
- Lifetimes for machine j are i.i.d. as a continuous random variable L_{j}
- Walking time from machine j to next machine is a constant $W_{j}>0$
- At time 0 , the repairman has just finished repairing machine 1 and all other machines are broken.

Suppose we wish to estimate μ_{r}, the expected fraction of time in $[0, \mathrm{t}]$ that the repairman spends repairing machines. If we define our system state by $\mathrm{X}(\mathrm{t})=\mathrm{A}(\mathrm{t})$, where

$$
A(t)= \begin{cases}1 & \text { if repairman is repairing a machine } \\ 0 & \text { otherwise }\end{cases}
$$

then $\mu_{\mathrm{r}}=E\left[\frac{1}{t} \int_{0}^{t} A(u) d u\right]$. We might also want to estimate μ_{s}, the expected number of stopped machines at time t , or μ_{w}, the long-run average wait for repair for machine 1 .

Problems:

- Can't determine number of stopped machines just from observing $\mathrm{A}(\mathrm{t})$
- Not even clear how to generate sample paths of $\{\mathrm{A}(\mathrm{t}): \mathrm{t} \geq 0\}$
\Rightarrow need to put more information into state definition
Here's another attempt at a state definition:

$$
\mathrm{X}(\mathrm{t})=\left(\mathrm{Z}_{1}(\mathrm{t}), \mathrm{Z}_{2}(\mathrm{t}), \ldots, \mathrm{Z}_{\mathrm{N}}(\mathrm{t}), \mathrm{M}(\mathrm{t}), \mathrm{N}(\mathrm{t})\right),
$$

where

$$
\begin{aligned}
& Z_{j}(t)= \begin{cases}1 & \text { if machine } j \text { is waiting for repair at time } t \\
0 & \text { otherwise }\end{cases} \\
& M(t)= \begin{cases}j & \text { if machine } j \text { is under repair at time } t \\
0 & \text { if no machine is under repair at time } t\end{cases} \\
& N(t)=j \text { if at time } t \text { the repairman will next arrive at machine } j
\end{aligned}
$$

Then we can generate sample paths of $\{\mathrm{X}(\mathrm{t}): \mathrm{t} \geq 0\}$ (because this process is a well-defined GSMP as shown below and, as discussed in class, there is a well-defined algorithm for generating sample paths of a GSMP). Also, all of the system characteristics of interest can be precisely expressed in terms of $\{\mathrm{X}(\mathrm{t}): \mathrm{t} \geq$ 0\}:

$$
\mu_{\mathrm{r}}=E\left[\frac{1}{t} \int_{0}^{t} f_{r}(X(u)) d u\right] \quad \text { and } \quad \mu_{\mathrm{s}}=\mathrm{E}\left[\mathrm{f}_{\mathrm{s}}(\mathrm{X}(\mathrm{t}))\right]
$$

where

$$
\begin{aligned}
& f_{r}\left(z_{1}, \ldots, z_{N}, m, n\right)=1_{\{1,2, \ldots, N\}}(m) \\
& f_{s}\left(z_{1}, \ldots, z_{N}, m, n\right)=z_{1}+z_{2}+\ldots+z_{N}+1_{\{1,2, \ldots, N\}}(m)
\end{aligned}
$$

(Here $1_{A}(x)=1$ if $x \in A$ and $1_{A}(x)=0$ otherwise.)
Also, we can express μ_{w} in terms of $\{\mathrm{X}(\mathrm{t}): \mathrm{t} \geq 0\}$. To see this, set $\mathrm{B}_{0}=0$ and recursively define the start and termination of the $\mathrm{n}^{\text {th }}$ waiting time for machine 1 by
$\mathrm{A}_{\mathrm{n}}=\min \left\{\zeta_{\mathrm{k}}>\mathrm{B}_{\mathrm{n}-1}: \mathrm{Z}_{1}\left(\zeta_{\mathrm{k}-1}\right)=0\right.$ and $\left.\mathrm{Z}_{1}\left(\zeta_{\mathrm{k}}\right)=1\right\}$ and $\mathrm{B}_{\mathrm{n}}=\min \left\{\zeta_{\mathrm{k}}>\mathrm{A}_{\mathrm{n}}: \mathrm{M}\left(\zeta_{\mathrm{k}-1}\right) \neq 1\right.$ and $\left.\mathrm{M}\left(\zeta_{\mathrm{k}}\right)=1\right\}$
where ζ_{n} is the time of the $n^{\text {th }}$ state transition. We can also define these times in terms of the continuous time process by setting

$$
\mathrm{A}_{\mathrm{n}}=\min \left\{\mathrm{t}>\mathrm{B}_{\mathrm{n}-1}: \mathrm{Z}_{1}(\mathrm{t}-)=0 \text { and } \mathrm{Z}_{1}(\mathrm{t})=1\right\} \text { and } \mathrm{B}_{\mathrm{n}}=\min \left\{\mathrm{t}>\mathrm{A}_{\mathrm{n}}: \mathrm{M}(\mathrm{t}-) \neq 1 \text { and } \mathrm{M}(\mathrm{t})=1\right\},
$$

where $\mathrm{X}(\mathrm{t}-)$ indicates the state of the system just before time t .
In either case, we can then write the $\mathrm{n}^{\text {th }}$ waiting time as $\mathrm{D}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}}-\mathrm{A}_{\mathrm{n}}$, and hence

$$
\mu_{\mathrm{w}}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} D_{k} \quad \text { (assuming that it exists) }
$$

The process $\{\mathrm{X}(\mathrm{t}): \mathrm{t} \geq 0\}$ can be specified as a GSMP as follows:

- S consists of all $\left(z_{1}, \ldots, z_{N}, m, n\right) \in\{0,1\}^{N} \times\{0,1, \ldots, N\} \times\{1,2, \ldots, N\}$ such that
- $\mathrm{n}=\mathrm{m}+1$ if $0<\mathrm{m}<\mathrm{N}$
- $\mathrm{n}=1$ if $\mathrm{m}=\mathrm{N}$
- $\mathrm{m}=\mathrm{j}$ only if $\mathrm{z}_{\mathrm{j}}=0(1 \leq \mathrm{j} \leq \mathrm{N})$
- $E=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{N}+2}\right\}$, where
- $e_{j}=$ "stoppage of machine $j "(1 \leq j \leq N)$
- $\mathrm{e}_{\mathrm{N}+1}=$ "completion of repair"
- $\mathrm{e}_{\mathrm{N}+2}=$ "arrival of repairman"
- $E(s)$ is defined as follows for $s=\left(z_{1}, \ldots, z_{N}, m, n\right)$:
- $e_{j} \in E(s)(1 \leq j \leq N)$ iff $z_{j}=0$ and $m \neq j$
- $\mathrm{e}_{\mathrm{N}+1} \in \mathrm{E}(\mathrm{s})$ iff $\mathrm{m}>0$
- $\mathrm{e}_{\mathrm{N}+2} \in \mathrm{E}(\mathrm{s})$ iff $\mathrm{m}=0$
- $\mathrm{p}\left(s^{\prime} ; \mathrm{s}, \mathrm{e}^{*}\right)$ is defined as follows:
- if $\mathrm{e}^{*}=\mathrm{e}_{\mathrm{j}}(1 \leq \mathrm{j} \leq \mathrm{N})$, then $\mathrm{p}\left(s^{\prime} ; \mathrm{s}, \mathrm{e}^{*}\right)=1$
when $\mathrm{s}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{j}-1}, 0, \mathrm{z}_{\mathrm{j}+1}, \ldots, \mathrm{z}_{\mathrm{N}}, \mathrm{m}, \mathrm{n}\right)$ and $s^{\prime}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{j}-1}, 1, \mathrm{z}_{\mathrm{j}+1}, \ldots, \mathrm{z}_{\mathrm{N}}, \mathrm{m}, \mathrm{n}\right)$
- if $\mathrm{e}^{*}=\mathrm{e}_{\mathrm{N}+2}$, then $\mathrm{p}\left(s^{\prime} ; \mathrm{s}, \mathrm{e}^{*}\right)=1$
when $\mathrm{s}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{j}-1}, 1, \mathrm{z}_{\mathrm{j}+1}, \ldots, \mathrm{z}_{\mathrm{N}}, 0, \mathrm{j}\right)$ with $\mathrm{j}<\mathrm{N}$ and $s^{\prime}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{j}-1}, 0, \mathrm{z}_{\mathrm{j}+1}, \ldots, \mathrm{z}_{\mathrm{N}}, \mathrm{j}, \mathrm{j}+1\right)$;
when $\mathrm{s}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{N}-1}, 1,0, \mathrm{~N}\right)$ and $s^{\prime}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{N}-1}, 0, \mathrm{~N}, 1\right)$;
when $\mathrm{s}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{j}-1}, 0, \mathrm{z}_{\mathrm{j}+1}, \ldots, \mathrm{z}_{\mathrm{N}}, 0, \mathrm{j}\right)$ with $\mathrm{j}<\mathrm{N}$ and $s^{\prime}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{j}-1}, 0, \mathrm{z}_{\mathrm{j}+1}, \ldots, \mathrm{z}_{\mathrm{N}}, 0, \mathrm{j}+1\right)$; and when $\mathrm{s}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{N}-1}, 0,0, \mathrm{~N}\right)$ and $s^{\prime}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{N}-1}, 0,0,1\right)$
- exercise: do the case $\mathrm{e}^{*}=\mathrm{e}_{\mathrm{N}+1}$
- $\mathrm{F}\left(\mathrm{x} ; s^{\prime}, e^{\prime}, \mathrm{s}, \mathrm{e}^{*}\right)$ is defined as follows
- if $e^{\prime}=\mathrm{e}_{\mathrm{j}}(1 \leq \mathrm{j} \leq \mathrm{N})$, then $\mathrm{F}\left(\mathrm{x} ; s^{\prime}, e^{\prime}, \mathrm{s}, \mathrm{e}^{*}\right)=\mathrm{P}\left\{\mathrm{L}_{\mathrm{j}} \leq \mathrm{x}\right\}$
- if $e^{\prime}=\mathrm{e}_{\mathrm{N}+1}$ and $s^{\prime}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{N}}, \mathrm{m}, \mathrm{n}\right)$ then $\mathrm{F}\left(\mathrm{x} ; s^{\prime}, e^{\prime}, \mathrm{s}, \mathrm{e}^{*}\right)=\mathrm{P}\left\{\mathrm{R}_{\mathrm{m}} \leq \mathrm{x}\right\}$
- if $e^{\prime}=\mathrm{e}_{\mathrm{N}+2}$ and $s^{\prime}=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{N}}, 0, \mathrm{n}\right)$ then $\mathrm{F}\left(\mathrm{x} ; s^{\prime}, e^{\prime}, \mathrm{s}, \mathrm{e}^{*}\right)=1_{[0, x]}\left(\mathrm{W}_{\mathrm{n}-1}\right)$ if $\mathrm{n}>1$ and $1_{[0, x]}\left(\mathrm{W}_{\mathrm{N}}\right)$ if $\mathrm{n}=1$
- $\mathrm{r}(\mathrm{s}, \mathrm{e}) \equiv 1$ for all s and e
- initial dist'n: $v(s)=1$, where $\mathrm{s}=(0,1,1, \ldots, 1,0,2), F_{0}\left(x ; e_{1}, s\right)=P\left\{L_{1} \leq x\right\}$ and $\mathrm{F}_{0}\left(x ; e_{N+2}, s\right)=1_{[0, x]}\left(W_{1}\right)$

